Should we screen for abdominal aortic aneurysms?

ABSTRACT

Ultrasonography can screen for abdominal aortic aneurysms (AAAs) safely, cheaply, and accurately. Once detected, an AAA can be monitored and repaired before it is likely to rupture. The US Preventive Services Task Force recently recommended a one-time screening for AAAs by ultrasonography for men age 65 to 75 years who have ever smoked. We should consider expanding the recommendations to include others at risk.

KEY POINTS

AAAs are typically asymptomatic until they rupture, an event that is usually fatal.

Screening for AAAs reduces aneurysm-related mortality and is cost-effective.

Once an AAA is detected, the patient should be aggressively treated for cardiovascular risk factors and regularly monitored with abdominal ultrasonography.

Patients should be referred for open surgical or endovascular repair when the AAA diameter reaches 5.5 cm or is expanding faster than 1.0 cm per year.

THE DISEASE: DO AAAs WARRANT SCREENING?

The short answer as to whether we should screen for abdominal aortic aneurysms (AAAs) is yes, but only in appropriate patients.

Screening for asymptomatic vascular disease is a complex issue of great public health importance. Vascular diseases, including AAAs, are often asymptomatic, and the first clinical event is often fatal or life-threatening. The so-called detection gap between pathologically present (but asymptomatic) disease and clinically apparent disease has led to an enormous interest in screening, not only in the medical community but also in the general public and industry.

Although it may seem obvious that detecting disease early should be beneficial, experience with a number of diseases has shown that it isn’t necessarily so. The apparent benefits of screening may be misleading because of failure to take into account lead time, length time, and overdiagnosis biases. Screening may even be harmful if it leads to patients undergoing dangerous invasive procedures needlessly.

This article examines the issue of screening for AAAs by applying criteria for evaluating screening programs adopted by the World Health Organization (Table 1). For a more in-depth review of AAAs in general, see our article in a recent issue of this journal.
fit are lacking. In contrast, despite evidence that it is beneficial, screening for AAA remains controversial.

Are AAAs an important health problem? The answer is a qualified yes. AAAs, defined as an aortic diameter of 3 to 6 cm, are common in older people and are the 10th leading cause of death in American men older than 65 years. In fact, at least 5% of American men older than 65 years are estimated to have AAAs, and the prevalence increases by 6% per decade thereafter.

Moreover, the overall prevalence of aneurysmal disease seems to be increasing. Although life expectancy in the United States is also increasing (eg, from 68.8 years in 1975 to 74.4 years in 2001 for men; 76.6 to 79.8 years in women), the increase in AAAs cannot be attributed solely to the aging of the population nor to better diagnosis.

Despite advances in surgical techniques and in critical care practices over the past several decades, we still see the same number of ruptured AAAs in emergency departments. Such presentations constitute missed opportunities, and when we consider that our elderly population is expected to double by 2030, AAAs may represent a crisis in the making.

Do AAAs have a detectable, treatable latent stage? Yes, AAAs definitely have an asymptomatic but detectable latent stage during which treatment is more beneficial than later. Although AAAs are usually asymptomatic during the latent stage, as many as one in three may rupture if left untreated. A ruptured AAA carries a grave prognosis, with an overall mortality rate approaching 75%. In contrast, the mortality rate associated with elective surgical repair is only 2% to 6%, and lower figures have been claimed for endovascular repair.

About 16% of “large” AAAs (diameter > 5.5 cm) rupture, causing 9,000 AAA-related deaths in the United States per year. Several studies found that most deaths from ruptured AAAs can be prevented if the AAA is detected and repaired in time. For men older than 60 years, screening can reduce the aneurysm rupture rate by 45% to 49% and reduce AAA-related mortality by 21% to 68%.

The Multicenter Aneurysm Screening Study (MASS) randomized 67,800 men age 65 to 74 years equally to either a group that received an ultrasound screening for AAA or to a control group. In the screening group, men found to have an abdominal aorta larger than 3 cm in diameter were followed with serial ultrasound scans for

Table 1

<table>
<thead>
<tr>
<th>Criteria for an acceptable screening program</th>
</tr>
</thead>
<tbody>
<tr>
<td>The disease</td>
</tr>
<tr>
<td>Is an important health problem</td>
</tr>
<tr>
<td>Has an asymptomatic but detectable latent stage</td>
</tr>
<tr>
<td>Has a treatment that is better at the latent stage than at a later stage</td>
</tr>
<tr>
<td>Is more prevalent in high-risk populations that can be defined for screening</td>
</tr>
<tr>
<td>Has a cost-effective screening strategy</td>
</tr>
<tr>
<td>The screening test</td>
</tr>
<tr>
<td>Is simple, safe, precise, feasible, and validated</td>
</tr>
<tr>
<td>Is ethically acceptable as well as accepted by the target population</td>
</tr>
<tr>
<td>Offers defined cutoff levels and is reasonably cost-effective</td>
</tr>
<tr>
<td>Is suitable and has agreed-upon follow-up intervals for future tests</td>
</tr>
<tr>
<td>The treatment</td>
</tr>
<tr>
<td>Is effective and there are accepted preventive measures or treatments for detected patients</td>
</tr>
<tr>
<td>Has clear treatment policy and options</td>
</tr>
</tbody>
</table>

ADAPTED FROM WILSON JM, JUNGNER YG. PRINCIPLES AND PRACTICE OF SCREENING FOR DISEASE. WHO PUBLIC HEALTH PAPER 1968:34.
a mean duration of 4.1 years. When an aneurysm reached 5.5 cm, grew more than 1 cm per year, or became symptomatic, it was surgically repaired. The rate of aneurysm-related mortality was 53% lower in the screening group. The study was not powered to detect reduced overall mortality.

Other screening trials in different countries followed participants for 4 to 10 years and had strikingly similar results.12,30–39 Although the relative risk reductions in the studies were large, the absolute risk was small. For example, in the MASS trial, there were 65 AAA-related deaths in the intervention group, for an absolute risk of 0.19%; in the control group there were 113 AAA-related deaths, for an absolute risk of 0.33%. The same caveat applies for all the major screening trials.

Can high-risk groups that need screening be defined? Yes, in most cases. Risk factors for aortic wall dilatation include:

• Male sex
• Older age
• Family history of AAAs or of death from a ruptured aneurysm
• Current or past smoking
• Hypertension
• Known atherosclerotic disease (coronary artery disease, cerebrovascular disease)
• Hypercholesterolemia.

Cardiovascular risk factors, many of which are also risk factors for aneurysms, tend to cluster in certain patients. Men who smoke, have hypertension, and have other cardiovascular risk factors have an incidence of AAA two to five times higher than in the general population. Women older than 60 years with cardiovascular risk factors are two to three times more likely to develop aneurysmal disease.21,38 Interestingly, evidence from epidemiologic studies suggests that contrary to their strong association with occlusive vascular disease, black race and diabetes mellitus appear to be associated with a lower incidence of AAA.13,40

Is screening cost-effective? Yes, particularly when applied to appropriate candidates and viewed over the long term. The MASS trial,27 conducted in the United Kingdom, found that a population-based screening program would cost £28,389 per life-year saved at 4 years. The screening program becomes more cost-effective in the long run with projected cost of only £8,000 per life-year saved.28 These results were paralleled in the United States by a cost-effectiveness study21,26 demonstrating a cost-effectiveness ratio of an AAA screening program of $11,285. This figure is comparable to the cost of well-established screening programs such as mammography for breast cancer detection, as well as therapeutic interventions such as coronary artery bypass surgery.21

The differences in the literature regarding the exact cost per life-year saved or quality-adjusted life-year units can be explained by the different models, costs and benefits, and assumed probabilities. The vast majority of studies, however, agree on the cost-effectiveness of a single screening ultrasound scan in the high-risk population. The latest United States Preventive Services Task Force (USPSTF) guidelines reflected these recommendations.41

- IS THERE AN ACCEPTABLE SCREENING TEST?

Ultrasonography is the cornerstone of AAA screening. It is available in almost every medical center and in many physician offices.

Is the test simple, safe, precise, feasible, and validated? Yes. Abdominal aortic ultrasonography is fast, inexpensive, safe, and well tolerated by most patients. It is highly accurate, with 95% sensitivity and 100% specificity for AAAs.42 The most important limitations of ultrasonography are operator dependence and reduced accuracy in people who are obese, have bowel gas, or have periaortic disease. These limitations are less important in the hands of experienced sonographers and in validated, accredited, high-volume vascular laboratories where there is adequate quality assurance.

Clinical abdominal examination should also be considered as part of AAA screening and surveillance. However, although physical examination may detect a large AAA, it is neither sensitive nor specific for small ones.
The role of abdominal self-examination has not been well defined.

Computed tomography and magnetic resonance angiography are accurate for diagnosing AAA but are less often used as first-line screening tests, mainly because of their expense and lack of availability, as well as because of potential contrast-related side effects of computed tomography.

Is the test ethically acceptable, and is it accepted by patients?

Yes. Screening ultrasonography is noninvasive and causes no serious side effects. Several studies and anecdotes from clinical practice suggest that screening for AAAs and diagnosing asymptomatic small aneurysms were not associated with significant long-term emotional or psychological stress to patients or their partners.43,44,45 Screening trials have found a high acceptance rate, ranging from 53% to 84%, and averaging about 80% in the MASS trial.27

A simple screening ultrasound test costs about $500, for which Medicare reimburses about $160. Private insurers and Medicare have been reluctant to reimburse the cost, posing a major obstacle to widespread AAA screening. Sometimes approval is granted on an individual basis. This has not changed with the recent USPSTF decision, although we hope it will.

Lack of coverage raises the ethical dilemma of AAA screening being available only to the elite who can afford it. Lawmakers have recently discussed the need for Medicare coverage of screening for appropriately selected patients.47

THE TREATMENT:

IS THERE A STANDARD OF CARE?

The purpose of screening is to enable patients with a disease to start therapy to change its course and prevent its complications. Other conditions that may affect the disease should also be addressed to improve the overall health of patients and their short-term and long-term outcomes.

The main treatment for AAA is surgical or endovascular repair. No medications have proven to affect aneurysm growth, and none is recommended for routine use.

Is there a clear treatment policy with proven therapeutic options?

Yes. Current guidelines and expert consensus statements recommend repair of AAAs 5.5 cm in diameter or larger, and of smaller AAAs that are rapidly expanding or that cause symptoms.

Rapid advances in endovascular aneurysm repair in the United States have been fostering a trend towards repairing smaller AAAs, even though results of randomized controlled trials suggest it might not be beneficial. Endovascular repair may also be a good option for sicker patients who are not candidates for open surgery. If so, future screening programs could be expanded to people who would not qualify for open repair.

Are there effective measures for small AAAs detected by screening?

Yes. A small, asymptomatic AAA (3–5.5 cm) may serve as a marker for vascular disease elsewhere, and finding one provides a good reason to aggressively start to modify risk factors.

AAA and atherosclerosis share many risk factors that tend to cluster. AAA patients have a high prevalence of systemic atherosclerosis: from 23% to 86% have coronary artery disease, 3% to 20% have cerebrovascular disease, and 12% to 42% have peripheral arterial disease.48

Overall cardiovascular health is likely to be improved by lifestyle changes (eg, smoking cessation, improved fitness) and medications for hypertension and dyslipidemia to achieve the targets recommended for secondary prevention. Patients who quit smoking may stave off reaching the AAA repair size during their lifetime.49

Are there established follow-up intervals for ultrasound tests for small AAAs?

Yes, but more research is needed.

Periodic ultrasonographic surveillance is recommended for aneurysms smaller than the repair cutoff.21 However, definite and unified parameters for appropriate surveillance intervals have not yet been determined because clinical trials have enrolled heterogeneous populations and used different standards for diagnosis and management.
Based on the best available data, we propose a surveillance plan for patients diagnosed with small AAAs (2.5–5.0 cm) (TABLE 2). Since men older than 70 years have three times the rate of progression of younger men, they may need more frequent follow-up scans. In addition, aneurysm diameters determined by ultrasound may vary by up to 0.5 cm, which should be considered when recommending optimal times for rescanning and repair.

POLITICAL WILL IS CHANGING

Adopting a national screening program for early detection of AAA has gained momentum recently and was discussed at the congressional level in recent months, signaling the beginning of better societal and political understanding of this issue.

In 1996 the USPSTF neither endorsed nor recommended screening asymptomatic adults for AAA with abdominal palpation or ultrasound. However, in 2005, it updated its recommendations and now recommends a one-time screening for AAA by ultrasonography for men age 65 to 75 years who have ever smoked, based on evidence that screening followed by surgical repair of AAAs larger than 5.5 cm decreases AAA-specific mortality.

Some in the vascular community believe that the USPSTF recommendations are still too restrictive. Patients older than 60 years with a history of smoking (regardless of sex), a history of peripheral vascular disease, or a family history of aneurysms are considered at high risk for AAA and should be screened. Furthermore, about 22% of aneurysms occur in nonsmokers, and up to 10% of aneurysms in patients under age 65 ruptured in the Gloucestershire experience; screening men at age 60 instead of 65 would presumably detect most of these before rupture. Therefore, a single ultrasound screen for all men at age 60 or 65 may be justified.

Furthermore, guidelines for selective screening (i.e., targeting high-risk populations) were recently proposed in a consensus statement of the major vascular societies in the United States (TABLE 3). This strategy is likely to increase the yield of screening and reduce AAA-related mortality. A single screening ultrasound scan in people at high risk or with equivocal findings on physical examination is both cost-effective and beneficial.

REFERENCES

ADDRESS: Amjad AlMahameed, MD, Section of Vascular Medicine, S60, Department of Cardiovascular Medicine, The Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195; e-mail almahaa@ccf.org.